

ELSEVIER

available at www.sciencedirect.comjournal homepage: www.ejconline.com

Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours

Darci T. Butcher^a, David I. Rodenhiser*

The University of Western Ontario and the London Regional Cancer Program, London Health Sciences Centre, Room A4-134, 790 Commissioners Rd. East, London, Ont., Canada N6A 4L6

ARTICLE INFO

Article history:

Received 5 June 2006

Received in revised form 31 August 2006

Accepted 7 September 2006

Available online 27 October 2006

Keywords:

DNA methylation

Breast cancer

Epigenetics

BRCA1

CTCF

DNMT3b

ABSTRACT

We assessed expression of the BRCA1, CTCF and DNMT3b methyltransferase genes along with BRCA1 promoter methylation to better define the epigenetic events involved in BRCA1 inactivation in sporadic breast cancer. These gene expression patterns were determined in 54 sporadic breast tumours by immunohistochemistry and the methylation status of the BRCA1 promoter was evaluated using methylation-specific PCR. We observed significant DNMT3b expression in 80% of the tumours and that 43% of tumours exhibited novel cytoplasmic CTCF expression. Pairwise analyses of gene expression patterns showed that 28/32 tumours lacked BRCA1 expression and also exhibited cytoplasmic CTCF staining, while 24/32 of these tumours also overexpressed DNMT3b. Furthermore, 86% of the BRCA1 low-expressing tumours were methylated at the BRCA1 promoter and a subset of these tumours displayed both cytoplasmic CTCF and increased DNMT3b expression. Thus, tumour subsets exist that display concurrent decreased BRCA1 expression, BRCA1 promoter methylation, cytoplasmic CTCF expression and with DNMT3b over-expression. We suggest that these altered CTCF and DNMT3b expression patterns represent (a) critical events responsible for the epigenetic inactivation of BRCA1 and (b) a diagnostic signature for epigenetic inactivation of other tumour suppressor genes in sporadic breast tumours.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Most cancers result from multiple genetic and epigenetic alterations that transform a normal cell into an invasive and/or metastatic phenotype. This process includes altered DNA methylation patterns occurring as global hypomethylation and localised hypermethylation events that lead to the inappropriate expression of tumour suppressor genes in sporadic cancers.¹ In breast cancer, in particular, hypermethylation of the BRCA1 promoter has been reported in up to 20%

of sporadic breast tumours and corresponds with a reduction in BRCA1 transcription.^{2,3} However, the mechanisms responsible for disrupting normally methylation-free promoter regions of tumour suppressor genes, leading to transcriptional repression and tumourigenesis, are unclear. Identifying these molecular events is critical if we are to exploit epigenetic changes as targets for novel clinical therapies that could re-establish proper DNA methylation and gene expression patterns, in a gene and cell-specific manner.

* Corresponding author: Tel.: +1 519 685 8600x52198; fax: +1 519 685 8616.

E-mail address: drodenhi@uwo.ca (D.I. Rodenhiser).

^a Present address: Institute for Medicine and Engineering, The University of Pennsylvania, 415 Stellar-Chance, 422 Curie Boulevard, Philadelphia, PA 19104-6100, United States.

0959-8049/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved.

[doi:10.1016/j.ejca.2006.09.002](https://doi.org/10.1016/j.ejca.2006.09.002)

DNA methylation is regulated by a complex machinery that includes DNA methyltransferases (DNMTs) and methyl binding domain proteins (MBDs).¹ DNMT-1, 3a and 3b are essential for proper development and for somatic cell function, with over-expression of the DNMTs being described in bladder, colon, kidney and pancreatic tumours.⁴ An increase in DNMT3b mRNA has been shown in breast tumours,⁵ and a novel promoter polymorphism increases DNMT3b expression and the risk of developing breast cancer in patients.⁶

We have previously implicated two proteins, CTCF and SP1, in maintaining a methylation-free BRCA1 promoter in normal breast tissue.¹ We have identified CTCF binding sites and *in vivo* SP1 binding at sequences flanking the hypomethylated promoter region of BRCA1.⁷ CTCF is of particular interest, since the gene is implicated in genomic imprinting and is located at 16q22, a commonly deleted region in sporadic breast cancer.^{8,9} In addition, in many breast tumours, CTCF is inappropriately expressed in the cytoplasm and is absent from the nucleus,¹⁰ suggesting that the functional loss of nuclear CTCF could contribute to the loss of methylation boundaries in genes like BRCA1 that possess CTCF binding sites.

Here, we have assessed the epigenetic regulation of BRCA1, DNMT3b and CTCF expression in the context of BRCA1 promoter methylation, in sporadic breast tumours. DNMT3b expression was observed in most BRCA1-deficient tumours, and we observed that a loss of BRCA1 correlates with the inappropriate cytoplasmic expression of CTCF in tumours that lack or express low levels of BRCA1. Furthermore, this cytoplasmic CTCF expression correlates with the over-expression of DNMT3b, and a methylated BRCA1 promoter in these tumours. Our data suggest that alterations in DNMT3b and CTCF expression are at least partially responsible for this inappropriate methylation within the BRCA1 promoter. As a consequence, loss of BRCA1 expression may lead to the dis regulation of numerous cell functions and chromosome instability that together predispose to the formation and progression of sporadic breast tumours.

2. Materials and methods

2.1. Archival breast tumours

Sixty anonymous tissue samples (54 tumours and 6 normal breast tissues) were obtained from the Manitoba Breast Tumour Bank for this study. The tumours were selected by the tumour bank from patients (over the age of 55) and all tumours were ductal infiltrating, lobular infiltrating or a combination of the two. This age of diagnosis was chosen based on the criteria for BRCA1 genetic screening in Ontario¹¹ and minimised the inclusion of tumours possessing hereditary BRCA1 or BRCA2 mutations. None of the patients providing tumour material had received chemotherapy, radiation therapy or hormone treatments that may have resulted in treatment-related epigenetic changes. No family history, hormone exposure, race or other clinical and demographic data were available for the cases selected. The anonymous control tissues were collected from reduction mammoplasty and the age of the patients was not indicated.

2.2. Immunohistochemistry

Serial 5 µm sections of formalin-fixed and paraffin embedded tissue were deparaffinised through 3 × 5 minute (min) washes in xylene, followed by rehydration in descending alcohols. Slides were then soaked in 1× phosphate buffered saline (1× PBS). Deparaffinised sections were treated with sodium citrate (0.1 M) to retrieve antigens by boiling at 1350 W for 7 min and at 945 W for 15 min in a microwave. The slides were allowed to cool and then rinsed in water. Endogenous peroxidase activity was blocked by incubation in 1% hydrogen peroxide followed by a wash in deionised water and 2 × 5 min rinses in 1× PBS.

The sections were immunoperoxidase stained following the manufacturer's instructions for the ABC staining system (rabbit sc-2018, goat sc-2023, or mouse sc-2017 as required by the antibody: Santa Cruz Biotechnology, Santa Cruz, CA). Briefly, tissues were incubated for one hour (h) in 1.5% blocking serum in PBS and the slides were incubated in primary antibody and 1.5% blocking serum overnight at 4 °C. Antibodies were used at the following concentrations: BRCA1-Ab1, 1:150 dilution (OP92; Oncogene Research Products, Cambridge, MA); CTCF-C20, 1:50 dilution (sc15914; Santa Cruz Biotechnology, Santa Cruz, CA); DNMT3b, 1:50 dilution (IMG-184; Imgenex, San Diego, CA); and Ki67, 1:50 dilution (H300; sc15402; Santa Cruz Biotechnology, Santa Cruz, CA). We validated this immunohistochemistry using paraffin slides of human tumour xenograft tumours generated in mouse tissue, which allowed us to identify positive signals against human antigen in the mouse background. All staining was done with batches of slides containing a slide to which only secondary antibody was added. In addition, we identified non-staining cells in stromal tissue on individual tumour slides as a control for non-specific staining.

Sections were washed 3 × 5 min in 1× PBS, incubated with 1 mg/ml biotinylated secondary antibody for 30 min and then washed 3 × 5 min in 1× PBS. Avidin and biotinylated horseradish peroxidase conjugates were added to the sections that were then incubated for 30 min and washed 3 × 5 min in 1× PBS. Peroxidase substrate containing DAB (3,3'-diaminobenzidine) chromogen was added to the sections for 6–10 min to develop the stain. Sections were then washed in deionised water for 5 min, counterstained with haematoxylin, and dehydrated using ascending alcohols and xylene. Images of immunohistochemical staining at 200× magnification were recovered using a Olympus AX70 upright microscope fitted with a Cooke Sensicam digital camera (Romulus, MI) using Image-Pro Plus software.

2.3. Cell counting and statistical analysis

Nuclear or cytoplasmic staining was counted using the cell counter function of the Image J software¹² to differentiate four separate staining parameters on two or three fields per section. BRCA1, DNMT3b and Ki67 expression was assessed on the basis of nuclear staining while CTCF expression was also assessed on the basis of cytoplasmic staining. Specific categories for BRCA1, DNMT3b or CTCF (percent of cells staining positive) and for Ki67 (as a measure of proliferation status) are shown in Table 1. Staining intensity was counted as neg-

Table 1 – Scoring criteria and results of BRCA1, CTCF, DNMT3b and K167 immunohistochemistry

		Normal (n = 6)	Tumour
(a)	BRCA1	(n = 6)	(n = 54)
(O)	Negative: 0–10% of cells	0	19
(+)	Weak: 10–20% positive cells	2 } (6) ^a	13 } (35) ^a
(++)	Positive: >20% cells	4 }	22 }
(b)	DNMT3b	(n = 6)	(n = 54)
(O)	Negative: 0–10% of positive cells	6	11
(+)	Weak: 10–20% positive cells	0 }	10 }
(++)	Positive: 20–40% positive cells	0 }	4 }
(+++)	Strongly positive: >40% positive cells	0	29
(c)	CTCF	(n = 6)	(n = 54)
(O)	Negative: 0–10% of positive nuclei	0	1
(N)	Nuclear staining: >10% of cells	5	14
(C)	Cytoplasmic staining: >10% of cells	0 }	23 }
(N/C)	Nuc+Cyto staining: >10% of cells	1 }	16 }
(d)	K167	n = 4	n = 50
(O)	Negative: 0–10% of positive cells	4	18
(+)	Weak: 10–20% positive cells	0	0
(++)	Positive: 20–40% positive cells	0	0
(+++)	Strongly positive: >40% positive cells	0 ^d	32 ^d

Percentages indicate the percent of cells with positive expression of the particular protein.
Significance (p)values were calculated for number pairs, as indicated in Section 3.

a p = 0.08; NS.
b p < 0.0001.
c p = 0.01.
d p = 0.01.

ative (0–10% of cells), weak (10–20%) or positive (greater than 20% of cells).^{13,14} Where sample size permitted, the χ^2 test was used to test for differences in proportions and the Fisher's exact test was used in categories with small sample sizes.

2.4. Sodium bisulphite conversion and methylation specific PCR

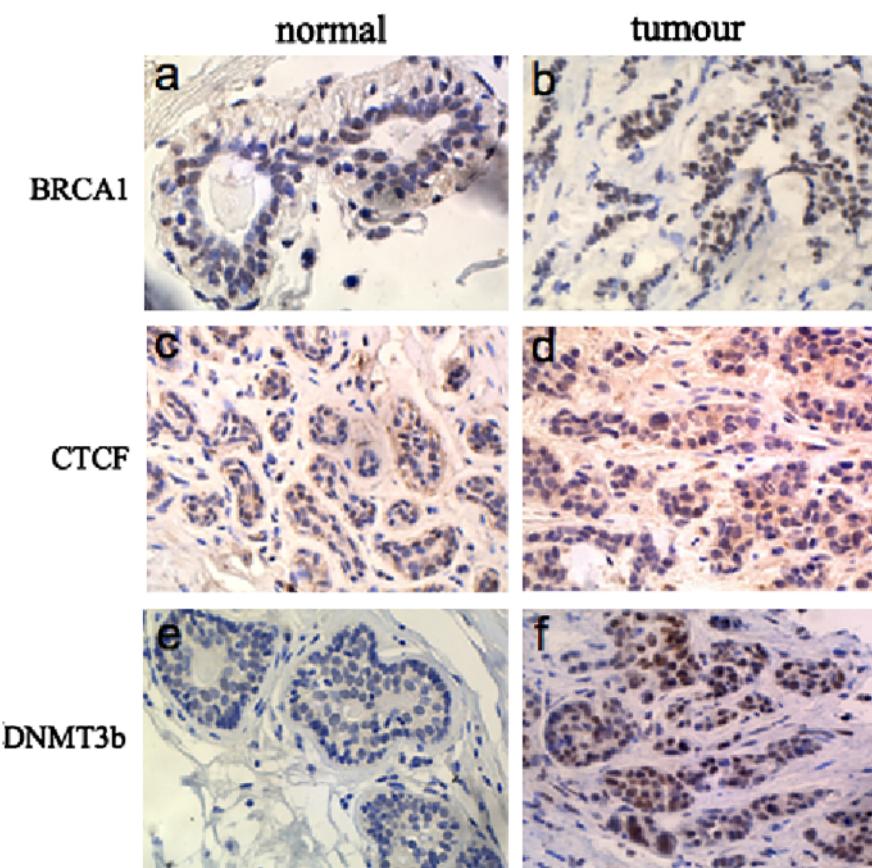
To determine DNA methylation status, slides were deparaffinised and sections were removed from the glass slides using a sterile razor blade, placed into small eppendorf tubes and then digested and sodium bisulphite treated as described previously.¹⁵ Sample lysis buffer (20–50 μ l; 0.5% Tween-20 in TE) was added to each of the samples, along with proteinase K (10 mg/ml) and the samples were then incubated for 72 h at 65 °C, with the addition of proteinase K every 24 h. DNA samples were then mixed with 0.2 M NaOH at 95 °C for 5 min and then at 70 °C for 10 min to denature the DNA, and two volumes of low melt agarose (2%) were added to this mixture.¹⁶ A 10 μ l aliquot of the agarose/DNA slurry was dropped into ice-cold mineral oil (500 μ l) and sodium bisulphite conversion of agarose-embedded genomic DNA was performed.¹⁶

Methylation-specific PCR was used to distinguish unmethylated from methylated BRCA1 alleles. Individual samples were collected from single tissue sections to provide DNA for methylation assays that were performed in duplicate. Primer sequences for 86 bp unmethylated product were 5'-TTGGTTTTGTGGTAATGGA AAAGTGT (sense) and 5'-CAAAAAATCTAACAAACTCA CACCA; and for the 75 bp

methylated DNA reactions: 5'-TCGTGGTAACGGAAAGCGC (sense) and 5'-AAATCTCAACG AACTCACGCC.¹⁷ The unmethylated sense primer begins at –46 and the methylated sense primer begins at –38 from the transcriptional start site (+1). DNA from MCF-7 cells was treated with SssI methylase as a positive methylation control and untreated DNA was used as a negative control based on the constitutive unmethylated status of BRCA1 in the MCF-7 cell line (data not shown). The bisulphite-treated DNA was PCR amplified in duplicate, from separate PCRs. The amplification conditions included an initial start at 95 °C (5 min) to melt the sample agarose bead, then 5 cycles at 95 °C (45 s), 62 °C (2 min), 72 °C (2 min) followed by 25 cycles at 95 °C (45 s), 62 °C (1 min), 72 °C (1 min) followed with a 72 °C incubation for 8 min using Taq polymerase (Invitrogen, La Jolla, CA). Aliquots of each PCR were loaded onto 10% polyacrylamide gels, stained with ethidium bromide and visualised under UV illumination.

3. Results

3.1. Immunohistochemical staining in normal breast and tumour samples


Protein expression patterns were evaluated by immunohistochemistry in six normal breast tissue samples (Table 1). BRCA1 was expressed in all normal tissues (in over 10% of nuclei), a result consistent with previous reports of BRCA1 expression in normal breast tissue.^{13,18} In contrast, DNMT3b

expression was absent in normal breast tissue samples. CTCF was expressed in the nuclei in all six samples, although weak cytoplasmic staining was observed in one of these samples. Ki67, a marker of cell proliferation, was expressed at low levels (or was absent) from the samples we assessed. To summarise, the predominant gene expression patterns in normal breast tissue involve the nuclear expression of BRCA1 and CTCF and the absence (or low levels) of DNMT3b and Ki67 (Table 1a–d).

Breast tumour sections were also immunostained for BRCA1, CTCF and DNMT3b. Tumours could be separated into three groups on the basis of their BRCA1 expression patterns (Table 1a). One group (19/54; 35%) expressed BRCA1 in less than 10% of the tumour cells or cells were negative for BRCA1 expression. A second group of tumours (13/54; 24%) expressed BRCA1 in only 10–20% of cells. The remaining tumour group (22/54; 41%) was BRCA1 positive in greater than 20% of the cells. These results showing varied levels of BRCA1 expression are not surprising, since BRCA1 is one of a number of gene targets having a causative role in sporadic breast cancer.²¹ Representative images of BRCA1 staining are shown in Fig. 1a and b.

Although none of the normal samples showed expression of DNMT3b, we observed statistically significant expression of DNMT3b in the tumour samples ($p < 0.0001$; Table 1b). Eighty percent of the breast tumours (43/54) exhibited DNMT3b expression in greater than 10% of the tumour cells, while only 11 tumours expressed low amounts of protein. In the DNMT3b expressing tumours, 67% (29/43) were strongly positive in that over 40% of the tumour cells expressed DNMT3b, while 10 other tumours (10/54; 23%) weakly expressed DNMT3b. Representative tumour expression patterns for DNMT3b are shown in Fig. 1e and f.

Tumours were also assessed for CTCF expression (Table 1c). Overall we observed a significant shift in CTCF expression in tumours, when compared with normal tissues ($p = 0.01$). Nuclear CTCF was present in all six normal samples; one of which also displayed cytoplasmic CTCF expression. However, 39/54 tumours expressed cytoplasmic CTCF expression (23/39) or nuclear/cytoplasm expression (16/39), revealing a dramatic change in subcellular localisation of CTCF. Representative images of CTCF staining are shown in Fig. 1c and d. Finally, the presence of Ki67 expression in 32/50 breast tumours (in comparison to none of the normal samples) indicates that a

Fig. 1 – Immunohistochemical staining of normal breast and breast tumour tissues. Representative normal and tumour tissue samples stained for BRCA1 (a,b), CTCF (c,d) and DNMT3b (e,f) are shown. In normal breast tissue, (a) BRCA1 is expressed in the nucleus in greater than 20% of the cells, (c) nuclear expression of CTCF is usually observed and (e) DNMT3b is expressed at low levels or is absent from the nuclei. We observed breast tumours in which (b) BRCA1 is expressed in the nucleus in greater than 20% of the cells and (d) cytoplasmic expression of CTCF is present. DNMT3b is also frequently expressed in tumour cell nuclei (f). Original magnification: 200 \times .

significant majority of the tumours ($p = 0.01$; Table 1d) possessed proliferating cells.¹⁹

3.2. Overlapping patterns of expression in breast tumours

We analysed the overlapping, pairwise expression patterns of these proteins. First, BRCA1 and DNMT3b expression patterns were compared (Table 2a) and we found that most of the tumours (24/32) that lacked BRCA1 (or expressed it weakly) were positive for DNMT3b expression. Only 9/22 BRCA1-expressing tumours were over-expressing DNMT3b, suggesting a correlation between DNMT3b overexpression and the decreased expression of BRCA1 (24/32 versus 9/22; $p = 0.01$).

Next, BRCA1 and CTCF expressions were compared (Table 2b) and we found that 28/32 tumours that lacked BRCA1 (or expressed it weakly) either exhibited exclusive cytoplasmic staining for CTCF (19/32) or had CTCF staining in both the cytoplasm and the nucleus (9/32). In contrast, only four tu-

mours expressed CTCF exclusively in the nucleus (19/32 versus 4/32, $p = 0.0001$). In the 22 tumours expressing BRCA1, only 5 tumours exhibited exclusive cytoplasmic staining for CTCF, whereas 10 tumours expressed CTCF solely in the nucleus (5/22 versus 10/22, $p = 0.11$). The remaining 7 tumours had CTCF staining in both the cytoplasm and the nucleus. These data show that the exclusive presence of CTCF in the cytoplasm correlates with a loss of BRCA1 expression (19/32 versus 5/22; $p = 0.01$), while CTCF expressed solely in the nucleus is more likely to be found in cells expressing BRCA1, rather than in BRCA1 non-expressing cells (10/22 versus 4/32; $p = 0.01$). In general, a greater proportion of tumours with low levels of BRCA1 exhibited cytoplasmic CTCF than did BRCA1 expressing tumours (28/32 versus 12/22; $p = 0.01$).

A comparison of DNMT3b and CTCF expression patterns (Table 2c) was also done. When DNMT3b was absent (or weakly expressed), CTCF was expressed in the nucleus (9/21), in the cytoplasm and the nucleus (6/21) or in the

Table 2 – Pairwise analyses of BRCA1, CTCF and DNMT3b expression patterns

		BRCA1			Total
		0–10%	10–20%	+20%	
(a) DNMT3b					
0–10%	2	1		8	11
10–20%	4	1		5	10
20–40%	2	0	24 ^a	2	4
+40%	11	11		7	29
Total	19 (32)	13		22	54
(b) CTCF					
nuclear only	3 (4) ^b	1		10 ^{c,e}	14
cytoplasmic only	12 (19) ^{b,d}	7	28 ^f	5 ^{c,d}	24
cytoplasmic and nuclear	4 ^e	5		7	16
Total	19 (32)	13		22	54
(c) DNMT3b					
		0–10%	10–20%	20–40%	+40%
					Total
(c) CTCF					
nuclear only	8	1	1 (5) ^g	4	14
absent/cytoplasmic only	2	4	1 (18) ^g	17	24
cytoplasmic and nuclear	1	5	2	8	16
Total	11	10	4 (33)	29	54
(d) Ki67					
0–10% positive	5	5	3 (8) ⁱ	5	18
>40% positive	4 (9) ^h	5	1 (23) ^{h,i}	22	32
Total	9 (19)	10	4 (31)	27	50

Percentages indicate the percent of cells with positive expression of the particular protein. In some cases, columns have been added together and these values are noted in brackets. Superscripts indicate that significance (p) values were calculated for number pairs, as indicated in the results section.

a ($p = 0.01$).

b ($p = 0.0001$).

c ($p = 0.11$).

d ($p = 0.01$).

e ($p = 0.01$).

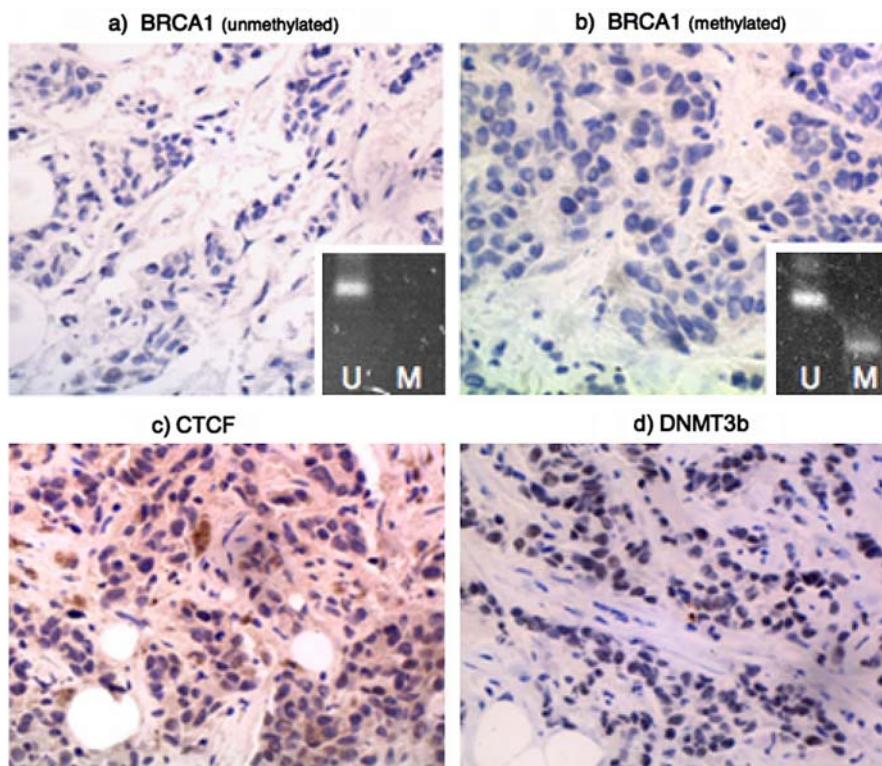
f ($p = 0.01$).

g ($p = 0.001$).

h ($p = 0.0005$).

i ($p = 0.06$).

cytoplasm alone (6/21). However, when DNMT3b was strongly expressed (in more than 20% of cells), CTCF was expressed exclusively in the cytoplasm of 18/33 of these tumours. An additional 10 tumours displayed nuclear/cytoplasmic CTCF expression (10/33), while only 5 tumours displayed CTCF expression exclusively in the nucleus (18/33 versus 5/33, $p = 0.001$). Thus, these pairwise analyses show that cytoplasmic expression of CTCF correlates with over-expression of DNMT3b in tumours that lack BRCA1. Our results suggest that when CTCF is absent from the nucleus in breast tumour cells, methylation boundaries may be compromised by the presence of excess DNMT3b, leading to promoter hypermethylation in genes such as BRCA1.


Finally, we observed that the majority of tumours (64%) were proliferating,¹⁹ as determined by greater than 10% of tumour cells expressing Ki67 (Table 2d). In addition, Ki67 was expressed in 23/32 tumours that overexpressed DNMT3b (23/32 versus 9/32, $p = 0.0005$).²⁰ The frequency of expression of DNMT3b in Ki67 negative tumours (8/18) was not statistically different from tumours expressing Ki67 (23/32, $p = 0.06$). In tumours lacking Ki67, there was no statistical difference between tumours that expressed DNMT3b and those that did not. Although there was a wide range of DNMT3b expression (from 40% to 100% of tumour cells), high DNMT3b expression levels did not correlate to the expression levels of Ki67. It therefore appears that proliferation is related to DNMT3b

expression but does not determine the level of DNMT3b expression.

3.3. BRCA1 expression and methylation status of the BRCA1 promoter

Lastly, we used methylation specific PCR (MSP) to evaluate BRCA1 promoter methylation in these tumour samples. While a few BRCA1 non-expressing tumours were not methylated at BRCA1 (Fig. 2a), the majority of tumours that lacked or expressed low BRCA1 levels (24/28; 86%) were also methylated at the BRCA1 promoter (Fig. 2b). These data show that a significant proportion of BRCA1 negative tumours also possess a methylated promoter region, consistent with methylation-associated transcriptional inactivation of BRCA1. To investigate a potential mechanism linking BRCA1 inactivation to DNA methylation, we compared the expression patterns of CTCF and DNMT3b with both the expression pattern and promoter methylation status of BRCA1.

Nineteen tumours with limited expression of BRCA1 (in less than 10% of tumour cells) also expressed CTCF in the cytoplasm. Eleven of these tumours lacked BRCA1 expression, and of these 11 tumours, 7 displayed BRCA1 promoter methylation and were concurrently positive for DNMT3b. Interestingly, 5 of these 7 tumours are also ER-/PR- (ER < 3.0 fmol/mg; PR < 10 fmol/mg; data not shown), while only 7 of the

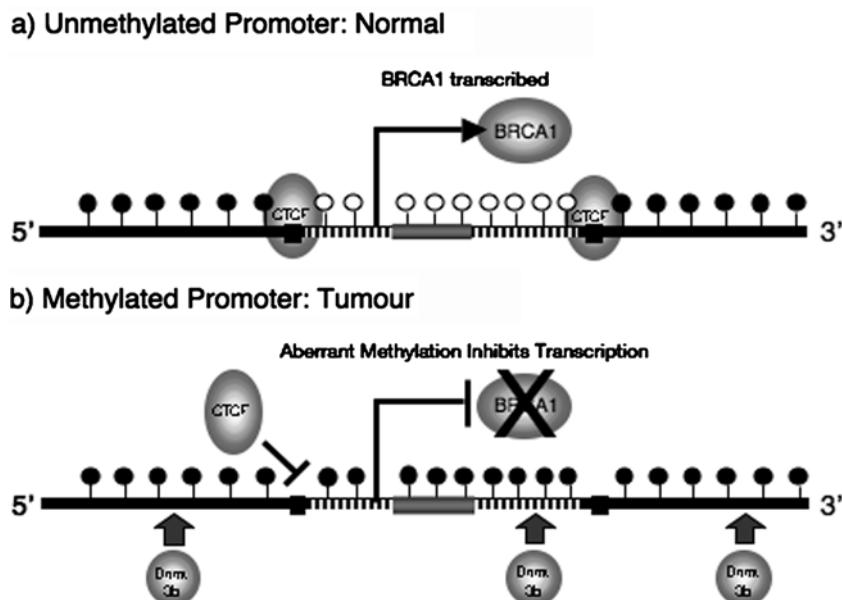
Fig. 2 – Immunohistochemical staining of BRCA1 and the methylation status of the BRCA1 promoter. DNA methylation of the BRCA1 promoter was determined by methylation specific PCR (MSP), which distinguishes between unmethylated (U) and methylated (M) templates. We show here (a) a tumour lacking BRCA1 expression and concurrently exhibiting a lack of methylation at the BRCA1 promoter (U). In contrast, a second tumour (b) lacks BRCA1 expression while displaying methylation within the BRCA1 promoter (M). This same tumour also displays (c) cytoplasmic expression of CTCF and (d) the nuclear expression of DNMT3b. Original magnification: 200x.

54 tumours in the entire tumour set were ER-/PR-. The other 4 tumours in this 11 tumour subset expressed DNMT3b in some cells, and interestingly, three displayed methylation at the BRCA1 promoter. In addition, 8 of the 32 tumours that express BRCA1 at low levels (and display cytoplasmic CTCF) also express high levels of DNMT3b and have a methylated BRCA1 promoter (Fig. 2c and d). Our results show that specific subsets of breast tumours exist that display BRCA1 promoter methylation, inappropriate expression patterns of both CTCF and/or DNMT3b and decreased expression of BRCA1 and perhaps other epigenetic targets including ER and PR.

4. Discussion

The downregulation of BRCA1 results in the loss of normal cellular growth and development and predisposes cells to tumourigenesis.²¹ In some sporadic breast cancers the levels of BRCA1 mRNA are repressed epigenetically, in the absence of identifiable BRCA1 mutations. Such hypermethylation within the BRCA1 promoter represses BRCA1 transcription and predisposes for tumourigenesis.^{3,22} A primary research focus has been to identify how the methylation machinery is recruited to methylation-sensitive gene promoter regions and how altered methylation patterns are generated when recruitment goes awry. The ultimate goal of this approach is to target these protein complexes, to reestablish normal methylation patterns and thereby reactivate silenced genes such as BRCA1.

This is the first report that correlates complex patterns of BRCA1, DNMT3b and CTCF expression with BRCA1 promoter methylation in a set of sporadic breast tumours. We determined that the loss of BRCA1 correlates with the cytoplasmic expression of CTCF in these tumour samples. Furthermore, the likelihood of DNMT3b expression is significantly higher in the tumours that do not express BRCA1. In fact, a significant proportion of the tumours in this sample set do not express BRCA1 protein, but overexpress DNMT3b and display cytoplasmic localisation of CTCF. In addition, the BRCA1 promoter is methylated in these tumour cells. These data suggest that a fundamental error in DNA methylation involving at least two components of the methylation machinery, DNMT3b (an essential DNA methyltransferase) and CTCF (a methylation boundary protein), can target tumour suppressor genes such as BRCA1, lead to its inactivation and predispose individual cells towards a tumourigenic fate.


In normal breast tissues, the unmethylated BRCA1 promoter⁷ enables essential transcription factors to bind and initiate transcription.²³ As a result, nuclear BRCA1 can function in DNA repair, checkpoint control, chromatin remodeling and transcriptional regulation.²¹ We observed that BRCA1 was absent or expressed at low levels in a majority of breast tumours. In addition, BRCA1 promoter methylation was found in 86% of these BRCA1 deficient tumours. This percentage is much higher than previously reported^{3,24} and may be due to the fact that only ductal infiltrating and/or lobular infiltrating tumours were chosen for analysis, and/or because we excluded women who were diagnosed prior to age 55. Thus, women from this age group and with this tumour type may be either more prone to epigenetic inactivation of BRCA1 by

DNA methylation or epigenetic inactivation may be a 'late' event in multistage breast tumourigenesis. The expression of DNMT3b protein in these breast tumours is a novel observation. Normally, DNMT3b is expressed during human and mouse development²⁵ and then is expressed later in only a few adult human somatic tissues, including the pancreas, testis, thyroid and bone marrow.²⁶ In contrast, increased expression of DNMT3b in different tumour types has previously been described,⁴ and in our study DNMT3b is expressed in 80% of the breast tumours.

We have previously reported multiple CTCF binding sites flanking the unmethylated BRCA1 promoter that may function to separate methylated (condensed) from unmethylated (accessible) chromatin.⁷ In this present report, we observed nuclear expression of CTCF in normal breast tissue, supporting its normal role as a methylation sensitive insulator that can block the spread of heterochromatin^{1,27} and block enhancer function.^{8,9,28} In contrast, some tumours we analysed showed concurrent DNMT3b expression and CTCF mis-localisation to the cytoplasm suggesting a fundamental disregulation of the methylation machinery.²⁹ Our data suggest that along with common deletion events in sporadic breast cancer involving the CTCF locus,^{30,31} impaired nuclear transport of CTCF may lead to the loss of methylation boundaries, thus exposing the BRCA1 promoter to inappropriate DNA methylation. Although no mutations within the nuclear localisation signal sequence of CTCF have been reported,^{32,33} mutations in the importin protein karyopherin- α have been associated with aberrant cytoplasmic localisation of p53.³⁴ Another possibility may involve the displacement of CTCF from its binding sites by its homologous family member BORIS.¹ Overexpression of BORIS³⁵ may disrupt the methylation boundary functions of CTCF, permitting DNMTs access to CpG islands while still allowing the nuclear localisation of CTCF we observed in some tumours.

We suggest that BRCA1 promoter methylation may not be the first epigenetic hit in the development of sporadic breast cancer. Instead, that event may be preceded by the disregulation of genes involved in maintaining and establishing genomic methylation patterns. In our model (Fig. 3) the normal, unmethylated BRCA1 promoter is maintained by CTCF bound to flanking consensus sequences that permit the access of appropriate transcription factors to their binding sites.²³ The aberrant localisation of CTCF to the cytoplasm, and/or its displacement by BORIS would result in the loss of these methylation boundaries flanking the BRCA1 promoter. Furthermore, the loss of CTCF from nuclear matrix associated regions³⁶ would cause global alterations in chromatin structure, facilitating the recruitment of histone deacetylases and histone methyltransferases.²³ Consequently, the overexpression and recruitment of DNMT3b would lead to the hypermethylation within the BRCA1 promoter, the recruitment of methyl binding proteins³⁷ and the inactivation of BRCA1 transcription. The subsequent loss of BRCA1 activity would predispose a cell to tumourigenesis, due to defects in BRCA1-dependent DNA repair, cell cycle regulation and proliferation.

It is unlikely that altered BRCA1 hypermethylation represents a single epigenetic event. A global shift in promoter methylation patterns, due to the CTCF localisation and the overexpression of DNA methyltransferases, could have

Fig. 3 – A model for BRCA1 inactivation by DNA methylation in sporadic breast tumours. (a) In normal breast tissue the BRCA1 promoter is not methylated, DNMT3b is expressed at low levels and CTCF is expressed in the nucleus. In this context, BRCA1 is expressed and is able to participate in its usual pathways. (b) In a subset of sporadic breast tumours, CTCF is localised in the cytoplasm, and therefore is not able to act as a boundary to protect the BRCA1 promoter, while DNMT3b is overexpressed and can *de novo* methylate the promoter region. The expression of BRCA1 is inactivated due to the newly established pattern of methylation. Loss of BRCA1 expression can predispose to the development of sporadic breast tumours. This scenario provides a potential target for demethylating agents that would reestablish appropriate BRCA1 expression.

profound consequences on other genes normally expressed in breast tissue such as ER, PR and E-cadherin.^{38–40} Thus, the accumulation of multiple epigenetic events throughout the genome would provide a selective advantage to individual cells and predispose them to tumour formation.

DNMT3b overexpression in breast tumours is potentially treatable with currently used anti-cancer therapy. Hypermethylated gene promoters have the potential to be reactivated by nucleoside analogues, such as 5-azacytidine and 5-aza-2-deoxycytidine (Decitabine), both of which have been approved for clinical usage. Azacitidine traps DNMT as a DNA adduct,⁴¹ thereby depleting DNMT3a and 3b and inhibiting DNA methylation.⁴² Clinical trials for Decitabine are already in the early stages for solid tumours,^{43,44} and azacitidine and decitabine are currently in use to treat myelodysplastic syndrome and acute myeloid leukemia (reviewed in [45]). Our data suggest that these specific stages of sporadic breast tumours displaying DNMT3b overexpression would be good candidates for targeted epigenetic therapy to sequester DNMT3b, decrease levels of aberrant methylation within the BRCA1 promoter and potentially reactivate BRCA1 expression. Clearly, the transcriptional consequences of aberrant DNA methylation are part of a complex picture in which both genetic and epigenetic alterations in gene expression contribute to breast tumour formation and progression.

Conflict of interest statement

None declared.

Acknowledgements

This work was funded by the Canadian Breast Cancer Research Alliance in a grant awarded to David Rodenhiser. Darcy Butcher received a Graduate Student Fellowship from the Canadian Institutes of Health Research and the London Regional Cancer Program. We are grateful to the Manitoba Breast Tumour Bank (MBTB) for providing the tumour samples used in this study. We thank Jamie Seabrook from the Children's Health Research Institute for his valuable assistance with statistical analyses and Anthony Gagliardi for assistance with light microscopy. The University of Western Ontario Ethics Review Board approved the use of anonymous tumour material provided by the MBTB for this project.

REFERENCES

1. Robertson KD. DNA methylation and human disease. *Nat Rev Genet* 2005;6(8):597–610.
2. Matros E, Wang ZC, Lodeiro G, Miron A, Iglesias JD, Richardson AL. BRCA1 promoter methylation in sporadic breast tumors: relationship to gene expression profiles. *Breast Cancer Res Treat* 2005;91(2):179–86.
3. Dobrovic A, Simpfendorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. *Cancer Res* 1997;57(16):3347–50.
4. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. *Nucleic Acids Res* 1999;27(11):2291–8.

5. Girault I, Tozlu S, Lidereau R, Bieche I. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. *Clin Cancer Res* 2003;9(12):4415–22.
6. Montgomery KG, Liu MC, Eccles DM, Campbell IG. The DNMT3B C → T promoter polymorphism and risk of breast cancer in a British population: a case-control study. *Breast Cancer Res* 2004;6(4):R390–4.
7. Butcher DT, Mancini-DiNardo DN, Archer TK, Rodenhiser DI. DNA binding sites for putative methylation boundaries in the unmethylated region of the BRCA1 promoter. *Int J Cancer* 2004;111(5):669–78.
8. Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. *Cell* 1999;98(3):387–96.
9. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. *Nature* 2000;405(6785):486–9.
10. Rakha EA, Pinder SE, Paish CE, Ellis IO. Expression of the transcription factor CTCF in invasive breast cancer: a candidate gene located at 16q22.1. *Br J Cancer* 2004;91(8):1591–6.
11. OHIP, Ontario physicians guide to referral of patients with family history of cancer to a familial cancer genetics clinic or genetics clinic. Ontario Ministry of Health, Ontario, Canada, 2002. Available from: <http://www.health.gov.on.ca/english/providers/program/ohip/bulletins/4000/bul4381a.html>.
12. Rasband WS. ImageJ image processing software, U.S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2006. Available from: <http://rsb.info.nih.gov/ij/>.
13. Miyamoto K, Fukutomi T, Asada K, et al. Promoter hypermethylation and post-transcriptional mechanisms for reduced BRCA1 immunoreactivity in sporadic human breast cancers. *Jpn J Clin Oncol* 2002;32(3):79–84.
14. Bheeman Dinesh KP, Halagowder Devaraj, Vadivel Murugan, Ramamurthy Rajaraman, Sivasidhambaram Niranjan. Analysis of loss of heterozygosity and immunohistochemistry in BRCA1 gene in sporadic cancers. *Mol Cell Biochem* 2006;287:177–83.
15. Anderson AE, Haines TR, Robinson DP, Butcher DT, Sadikovic DI, Rodenhiser DI. Sodium bisulfite analysis of the methylation status of DNA from small portions of paraffin slides. *Biotechniques* 2001;31(5):1004. 1006, 1008.
16. Haines TR, Rodenhiser DI, Ainsworth PJ. Allele-specific non-CpG methylation of the Nf1 gene during early mouse development. *Dev Biol* 2001;240(2):585–98.
17. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. *J Natl Cancer Inst* 2000;92(7):564–9.
18. Bogdani M, Teugels E, De Greve J, Bourgoin C, Neyns B, Pipeleers-Marichal M. Loss of nuclear BRCA1 localization in breast carcinoma is age dependent. *Virchows Arch* 2002;440(3):274–9.
19. Tan PH, Bay BH, Yip G, et al. Immunohistochemical detection of Ki67 in breast cancer correlates with transcriptional regulation of genes related to apoptosis and cell death. *Mod Pathol* 2005;18(3):374–81.
20. Lee PJ, Washer LL, Law DJ, Boland CR, Horon IL, Feinberg AP. Limited up-regulation of DNA methyltransferase in human colon cancer reflecting increased cell proliferation. *Proc Natl Acad Sci USA* 1996;93(19):10366–70.
21. Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. *Nat Rev Cancer* 2004;4(9):665–76.
22. Rice JC, Ozcelik H, Maxeiner P, Andrulis I, Futscher BW. Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. *Carcinogenesis* 2000;21(9):1761–5.
23. DiNardo DN, Butcher DT, Robinson DP, Archer TK, Rodenhiser DI. Functional analysis of CpG methylation in the BRCA1 promoter region. *Oncogene* 2001;20(38):5331–40.
24. Mancini DN, Rodenhiser DI, Ainsworth PJ, et al. CpG methylation within the 5' regulatory region of the BRCA1 gene is tumor specific and includes a putative CREB binding site. *Oncogene* 1998;16(9):1161–9.
25. Watanabe D, Suetake I, Tada T, Tajima S. Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. *Mech Dev* 2002;118(1–2):187–90.
26. Xie S, Wang Z, Okano M, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. *Gene* 1999;236(1):87–95.
27. Ohlsson R, Renkawitz R, Lobanenkov V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. *Trends Genet* 2001;17(9):520–7.
28. Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. *Nature* 2000;405(6785):482–5.
29. Ishida C, Ura K, Hirao A, et al. Genomic organization and promoter analysis of the Dnmt3b gene. *Gene* 2003;310:151–9.
30. Radford DM, Fair KL, Phillips NJ, et al. Allelotyping of ductal carcinoma in situ of the breast: deletion of loci on 8p, 13q, 16q, 17p and 17q. *Cancer Res* 1995;55(15):3399–405.
31. Vos CB, ter Haar NT, Rosenberg C, et al. Genetic alterations on chromosome 16 and 17 are important features of ductal carcinoma in situ of the breast and are associated with histologic type. *Br J Cancer* 1999;81(8):1410–8.
32. Aulmann S, Blaker H, Penzel R, Rieker RJ, Otto HF, Sinn HP. CTCF gene mutations in invasive ductal breast cancer. *Breast Cancer Res Treat* 2003;80(3):347–52.
33. Zhou XL, Werelius B, Lindblom A. A screen for germline mutations in the gene encoding CCCTC-binding factor (CTCF) in familial non-BRCA1/BRCA2 breast cancer. *Breast Cancer Res* 2004;6(3):R187–90.
34. Kim IS, Kim DH, Han SM, et al. Truncated form of importin alpha identified in breast cancer cell inhibits nuclear import of p53. *J Biol Chem* 2000;275(30):23139–45.
35. Hodgson JG, Chin K, Collins C, Gray JW. Genome amplification of chromosome 20 in breast cancer. *Breast Cancer Res Treat* 2003;78(3):337–45.
36. Dunn KL, Zhao H, Davie JR. The insulator binding protein CTCF associates with the nuclear matrix. *Exp Cell Res* 2003;288(1):218–23.
37. Auriol E, Billard LM, Magdinier F, Dante R. Specific binding of the methyl binding domain protein 2 at the BRCA1-NBR2 locus. *Nucleic Acids Res* 2005;33(13):4243–54.
38. Archey WB, McEachern KA, Robson M, et al. Increased CpG methylation of the estrogen receptor gene in BRCA1-linked estrogen receptor-negative breast cancers. *Oncogene* 2002;21(46):7034–41.
39. Lapidus RG, Ferguson AT, Ottaviano YL, et al. Methylation of estrogen and progesterone receptor gene 5' CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. *Clin Cancer Res* 1996;2(5):805–10.
40. Lapidus RG, Nass SJ, Davidson NE. The loss of estrogen and progesterone receptor gene expression in human breast cancer. *J Mammary Gland Biol Neoplasia* 1998;3(1):85–94.
41. Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. *Proc Natl Acad Sci USA* 1984;81(22):6993–7.
42. Oka M, Meacham AM, Hamazaki T, Rodic N, Chang LJ, Terada N. De novo DNA methyltransferases Dnmt3a and Dnmt3b

primarily mediate the cytotoxic effect of 5-aza-2'-deoxycytidine. *Oncogene* 2005;24(19):3091–9.

43. Aparicio A, Eads CA, Leong LA, et al. Phase I trial of continuous infusion 5-aza-2'-deoxycytidine. *Cancer Chemother Pharmacol* 2003;51(3):231–9.

44. Samlowski WE, Leachman SA, Wade M, et al. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. *J Clin Oncol* 2005;23(17):3897–905.

45. Lubbert M. DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. *Curr Top Microbiol Immunol* 2000;249:135–64.